A New Iridoid Glucoside from Lagotis yunnanensis

Xiao Dong YANG¹, Shuang Xi MEI^{1, 2}, Jing Feng ZHAO¹, Gan Peng LI^{1, 3}, Hong Bin ZHANG¹, Liang LI¹*

¹School of Pharmacy, Yunnan University, Kunming 650091
 ²School of Life Science, Yunnan University, Kunming 650091
 ³Department of Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Phytochemical investigation of *Lagotis yunnanensis* led to the isolation and identification of a new iridoid glucoside **1**, named as 10-O-(3, 4-dimethoxy-(E)-cinnamoyl)aucubin. Its structure was elucidated by spectroscopic methods.

Keywords: Lagotis yunnanensis, iridoid glucoside, 10-O-(3, 4-dimethoxy-(E)-cinnamoyl)aucubin.

Lagotis yunnanensis W. W. Smith is distributed in the southwest of China. It is used in Tibetan folk medicine for treatment of fever, hypertension, and acute and chronic hepatitis¹. To the best of our knowledge, no phytochemical study on *Lagotis yunnanensis* has been reported. Eight kilograms dried aerial part of the titled plant collected in the northwest of Yunnan Province were investigated by us. As a result, a new compound (1) and several known iridoid glucosides were isolated. Compound 1 was identified as 10-O-(3, 4-dimethoxy-(*E*)-cinnamoyl)aucubin.

Compound 1 was isolated as a white amorphous powder, $[\alpha]_D^{24}$ –60.07 (*c* 0.283, CH₃OH). Its molecular formula was determined as C₂₆H₃₂O₁₂ by HREIMS (found 536.1940, calcd. 536.1894). The IR spectrum showed characteristic absorptions for OH (3448 cm⁻¹, br), α , β -unsaturated ester (1700 and 1630 cm⁻¹), and aromatic-ring (1598

^{*} E-mail: liliang5758@sina.com

Figure 2 The key correlations in HMBC and NOESY spectrum of 1

Table 1 1 H (500 MHz) and 13 C NMR (125 MHz) data of **1** in DMSO- d_{6} , (δ in ppm)

С	δ _C	$\delta_{\mathrm{H}}(J,\mathrm{Hz})$	С	δ _C	$\boldsymbol{\delta}_{\mathbf{H}}\left(J,\mathbf{Hz} ight)$
1	95.71 (d)	4.87 (d, 1H, 7.4)	6′	61.08 (t)	
3	140.25 (d)	6.37 (dd, 1H, 6.0, 2.0)	6´a		3.65 (d, 1H, 11.9)
4	104.61 (d)	5.06 (dd, 1H, 6.0, 3.8)	6′b		3.60 (m, 1H)
5	44.58 (d)	2.58 (m, 1H)	1″	126.75 (s)	
6	80.50 (d)	4.37 (br, s, 1H)	2″	111.53 (d)	7.35 (d, 1H, 1.9)
7	132.35 (d)	5.81 (br, s, 1H)	3″	144.92 (s)	
8	139.78 (s)		4″	151.00 (s)	
9	46.53 (d)	2.85 (dd, 1H, 7.4, 7.9)	5″	110.36 (d)	7.00 (d, 1H, 8.0)
10	61.70 (t)	4.82 (s, 2H)	6″	122.94 (d)	7.26 (dd, 1H, 8.0, 1.9)
1′	98.27 (d)	4.56 (d, 1H, 7.5)	7″	148.93 (d)	7.64 (d, 1H, 15.9)
2'	73.27 (d)	3.14 (dd, 1H, 9.1, 7.5)	8″	115.24 (d)	6.60 (d, 1H, 15.9)
3′	76.50 (d)	3.42 (dd, 1H, 9.1, 8.7)	9″	166.16 (s)	
4′	70.00 (d)	3.20 (m, 1H)	OCH ₃	55.57 (q)	3.82 (s, 3H)
5′	77.00 (d)	3.19 (m, 1H)		55.53 (q)	3.81 (s, 3H)

and 1510 cm⁻¹). The UV absorption at 234, 296 and 322 nm also confirmed the existence of these unsaturated functional groups. From its NMR spectrum (**Table 1**), the signals of a β -*D*-glucose (C₁·-C₆', H₁·-H₆') and a 3, 4-disubstituted-(*E*)-cinnamoyl (C₁·-C₉'', H₂'', H₅'', H₆'', H₇'' and H₈'') were observed. ¹³C and DEPT NMR experiments differentiated the skeleton carbons of **1** as 1×CH₂ (61.70, C-10), 7×CH [including three olefinic carbons (140.25, 104.61, and 132.35, corresponding to C-3, C-4, and C-7, respectively), one oxygenated methine (80.50, C-6), one hemiacetal (95.71, C-1), C-5 (44.58) and C-9 (46.53)], 1×C (139.78, C-8). The above spectral information indicated that compound **1** is an analogue of 10-*O*-((*E*)-cinnamoyl)aucubin². In HMBC spectrum (**Figure 2**), the correlations of $\delta_{\rm H}$ 4.56 (H-1') to $\delta_{\rm C}$ 95.71 (C-1) suggested that β -*D*-glucose was substituted at C-1 position, while $\delta_{\rm H}$ 4.82 (H-10) to $\delta_{\rm C}$ 166.16 (C-9'') indicated that 3, 4-disubstituted-(*E*)-cinnamoyl was substituted at C-10 position. The correlations between $\delta_{\rm H}$ 3.81 (OCH₃) to $\delta_{\rm C}$ 144.92 (C-3'') and $\delta_{\rm H}$ 3.82 (OCH₃) to $\delta_{\rm C}$ 151.00 (C-4'') suggested that the cinnamoyl is 3, 4-dimethoxy-(*E*)-cinnamoyl. NOESY experiments were also conducted and the key correlations are indicated in **Figure 2**.

938 A New Iridoid Glucoside from *Lagotis yunnanensis*

The correlations between H-1 and H-6 as well as H-5 and H-9 suggested that the relative configuration of C-1, C-6, C-5 and C-9 in compound **1** are similar to that of 10-O-((E)-cinnamoyl)aucubin. Therefore, compound **1** was elucidated as 10-O-(3, 4-dimethoxy-(E)-cinnamoyl)aucubin.

References

- 1. Yunnan Medicinal Material Company, *Index Chinese Medicines Resources Yunnanensis*, Science Press, Beijing **1993**, p. 486.
- 2. R. K. Chaudhuri, O. Salama, O. Sticher, Helv. Chim. Acta, 1981, 64, 2401.

Received 9 september, 2002